Title : In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons.
Authors : De la Rossa A, Bellone C, Golding B, Vitali I, Moss J, Toni N, Lüscher C, Jabaudon D.
Journal : Nature Neuroscience
Publication Date : 2013
Citation : De la rossa A, Bellone C, Golding B, et al. In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons. Nat Neurosci. 2013;16(2):193-200.
Direct Link : "www.nature.com/neuro/journal/v16/n2/full/nn.3299.html"
Abstract :
The molecular mechanisms that control how progenitors generate distinct subtypes of neurons, and how undifferentiated neurons acquire their specific identity during corticogenesis, are increasingly understood. However, whether postmitotic neurons can change their identity at late stages of differentiation remains unknown. To study this question, we developed an electrochemical in vivo gene delivery method to rapidly manipulate gene expression specifically in postmitotic neurons. Using this approach, we found that the molecular identity, morphology, physiology and functional input-output connectivity of layer 4 mouse spiny neurons could be specifically reprogrammed during the first postnatal week by ectopic expression of the layer 5B output neuron–specific transcription factor Fezf2. These findings reveal a high degree of plasticity in the identity of postmitotic neocortical neurons and provide a proof of principle for postnatal re-engineering of specific neural microcircuits in vivo.
PostgraduateForum Is a trading name of FindAUniversity Ltd
FindAUniversity Ltd, 77 Sidney St, Sheffield, S1 4RG, UK. Tel +44 (0) 114 268 4940 Fax: +44 (0) 114 268 5766
An active and supportive community.
Support and advice from your peers.
Your postgraduate questions answered.
Use your experience to help others.
Enter your email address below to get started with your forum account
Enter your username below to login to your account
An email has been sent to your email account along with instructions on how to reset your password. If you do not recieve your email, or have any futher problems accessing your account, then please contact our customer support.
or continue as guest
To ensure all features on our website work properly, your computer, tablet or mobile needs to accept cookies. Our cookies don’t store your personal information, but provide us with anonymous information about use of the website and help us recognise you so we can offer you services more relevant to you. For more information please read our privacy policy
Agree Agree